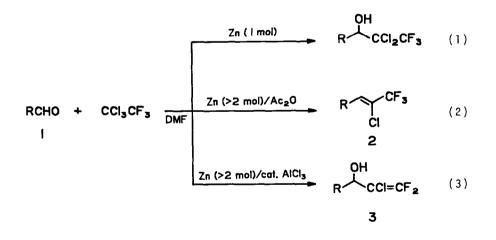
Tetrahedron Letters,Vol.27,No.31,pp 3655-3658,1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.


PRACTICAL WAYS FROM ALDEHYDES TO 2-CHLORO-1,1,1-TRIFLUORO-2-ALKENES AND 2-CHLORO-1,1-DIFLUORO-1-ALKEN-3-OLS

Makoto Fujita and Tamejiro Hiyama*

Sagami Chemical Research Center 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229, Japan

A reagent system $CF_3CC1_3/Zn(2 mo1)/Ac_20$ transformed aldehydes to 2-chloro-1,1,1-trifluoro-2-alkenes exclusively, whereas $CF_3CC1_3/Zn(2 mo1)/A1C1_3(cat.)$ converted aldehydes into 2-chloro-1,1-difluoro-1-alken-3-ols.

Thermally stable zinc reagent CF_3CCl_2ZnCl prepared from CF_3CCl_3 and slightly excess zinc powder was recently shown to achieve aldehyde addition efficiently (eq 1).¹ The presence of large excess of zinc (>2 mol) might induce further reductive β -elimination to afford 2-chloro-1,1,1-trifluoro-2alkene (2) or 2-chloro-1,1-difluoro-1-alken-3-ol (3). The two possible pathways are now found to be controllable by use of either 1.5-1.6 mol of acetic anhydride (eq 2) or AlCl₃ catalyst (eq 3), respectively.

A procedure for the selective transformation to 2 is as follows. Benzaldehyde (1 mmol) was treated with CCl_3CF_3 (2 mmol), zinc powder (5 mmol), and acetic anhydride (1.5 mmol) in dimethylformamide (DMF) (1 mL) for 7 h at 50 °C. Usual workup gave 2a solely in 75% yield as estimated by ¹⁹F NMR. The amount of zinc could be reduced to 3.1 mol by a modified two-step procedure: Benzaldehyde was first treated with CF_3CCl_3 (1.2 mol) and zinc (1.1 mol) at 50 °C for 24 h and then with acetic anhydride (1.5 mol) and zinc powder (2 mol) for additional 4 h at 50 °C to give 2a in 78% yield. In the absence of acetic anhydride, a mixture of 1a (17%), 2a (57%), and 3a (14%) resulted. Such Lewis acids² as TiCl₄ (1 mol) and SiCl₄ (0.3 mol) also were applicable to the selective transformation from 1a to 2a (67% and 42%, respectively), but BF_3 ·OEt₂ (1 mol) favored the formation of 3a (2a, 30% and 3a, 52%).


Various aldehydes including aromatic, aliphatic, and α , β -unsaturated ones were successfully converted into 2 by the $CF_3CCl_3/2n/Ac_2O$ reagent (Table I). Acetyl chloride could be employed instead of acetic anhydride in the two-step procedure (run 6).

run	aldehyde (1)	CC1 ₃ CF ₃ /Zn/Ac ₂ 0	conditions	product (2)	% yield ^a
1	O ^{CHO} (1a)	2.0 5.0 1.5	50 °C, 7 h	CI CI (2a)	75 [86:14]
2	1a	i: 1.2 1.1 ii: 2.0 1.6		2a	78 [87:13]
3	CI CHO (1b)	2.0 5.0 1.5	50 °C, 4 h	CI CI CI (2b)	73 [88:12]
4	16	i: 1.2 1.1 ii: 2.0 1.6		2b	76 [88:12]
5	<0 CH0 0 (1c)	i: 1.2 1.1 ii: 2.0 1.6		<0 CF₃ (2c) CI	81 [85:15]
6	1c	i: 1.2 1.1 ii: 2.0 1.6 ^b		2c	63 [86:14]
7	О~сно	i: 1.2 1.1 ii: 2.0 1.6			72 [89:11]
8	Ссно	i: 1.2 1.1 ii: 2.0 1.6		CI CF3	50 [85:15]
9	<u></u> сно	i: 1.2 1.1 ii: 2.0 1.6	50 °C, 1 h ^c 50 °C, 4 h	CI CF3	53 [88:12]

Table I. Transformation of RCHO to RCH=CH(C1)CF₃ with CCl₃CF₃/Zn/Ac₂O reagent.

^aThe values in the brackets refer to the (\underline{Z}) : (\underline{E}) ratio of 2. ^bAcCl was employed instead of Ac₂O. ^cNiCl₂(PPh₃)₂ (2 mol%) was employed as a catalyst.

Synthetic utility of the present reactions³ is demonstrated by one-step synthesis of 3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate,⁴ a recently found highly potent synthetic pyrethroid.⁵ Although the same transformation was previously carried out using CF_3CCl_3 , PPh₃, and zinc,⁶ the method reported here is apparently more practical in view of low cost of reagents and simpler separation procedure.

In striking contrast, aluminium chloride preferred **3a** formation. When benzaldehyde was allowed to react with CF_3CCl_3 (1.5 mol) and Zn (3 mol) in the presence of AlCl₃ (0.1 mol) at 50 °C for 18 h, formation of **3a** (86%) along with a trace amount of **2a** (<5%) was observed⁷ by ¹⁹F NMR analysis. Results applied to various aldehydes are summarized in Table II, which shows that this reaction is practical for the introduction of $CCl=CF_2$ moiety to aldehyde carbonyls in a single step.^{8,9} The aldehyde adducts of $CX=CF_2$ groups (X = F, Cl) are key synthetic intermediates for various fluorine-containing compounds.^{12,13}

run	aldehyde (1)	A1C13 ^b	conditions	product (3)	% yield
1	O ^{CHO} (1a)	0.1	50 °C, 18 h	OH CCI=CF ₂	(3a) 86
2	la	0.3	50 °C, 18 h	3a	80
3	сі Осно	0.3	50 °C, 3.5 h		e 72
4	nC ₁₀ H ₂₁ CHO	0.3	50 °C, 18 h		41
5	О _{ст} сно ме	0.1	50 °C, 18 h		86
6	Ссно	0.1	50 °C, 9 h		52

Table II. Transformation of RCHO to $RCH(OH)CC1=CF_2^a$

^aRCHO : $CC1_3CF_3$: Zn = 1 : 1.5 : 3.0. ^bMol-equiv to 1.

Acknowledgment. We thank FMC Corporation for a generous gift of (2-methyl-3-phenylphenyl)methanol.

References and Notes

- (a) M. Fujita, T. Morita, and T. Hiyama, <u>Tetrahedron Lett.</u>, 27 (1986) in press.
 (b) M. Fujita, T. Hiyama, and K. Kondo, <u>ibid.</u>, 27 (1986) in press.
- Similar deoxygenative behavior of Lewis acids is observed in the carbonyl methylenation with CH₂CX₂/Zn/Lewis acid reagent: (a) K. Takai, Y. Hotta, K. Oshima, and H. Nozaki, <u>Tetrahedron Lett.</u>, 1978, 2417; idem, <u>Bull. Chem. Soc. Jpn.</u>, 53, 1698 (1980). (b) J. Hibino, T. Okazoe, K. Takai, and H. Nozaki, <u>Tetrahedron Lett.</u>, 26, 5579 (1985). (c) T. Okazoe, J. Hibino, K. Takai, and H. Nozaki, <u>ibid.</u>, 26, 5581 (1985).
- 3. The product 2-chloro-1,1,1-trifluoro-5-methyl-2,4-hexadiene (2d) is also known as a key precursor of 3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate: see ref. 5a.
- 4. Only the (1R*,3S*) isomer was afforded though the starting aldehyde was a mixture of (1R*,3R*) and (1R*,3S*) isomers (6 : 1). See ref 1b.
- (a) D. Holland and D. A. Laidler, <u>J. Mol. Cat.</u>, **11**, 119 (1981). (b) D. Bellus, <u>Pure Appl. Chem.</u>, **57**, 1827 (1985). (c) Japan Kokai Tokkyo Koho 53-95945; 54-112820; 54-130537; 55-59142; 55-89248; 55-111488; 59-92830.
- 6. Anon. (UK), <u>Res. Discl.</u>, 219, 239 (1982); <u>Chem. Abstr</u>., 98, 16322r (1983).
- 7. On the employment of 1 mol of AlCl₃, 2,2-dichloro-3,3,3-trifluoro-1-phenyl-1-propanol and 2a were afforded in 37% and 11% yield, respectively; Formation of 3a was not detected.
- We have recently reported fluoride ion catalyzed aldehyde addition of polyhalovinylsilanes under mild conditions: M. Fujita and T. Hiyama, <u>J. Am. Chem. Soc</u>., 107, 4085 (1985).
- 9. The same transformation was carried out with $IMgCC1=CF_2^{10}$ or $LiCC1=CF_2^{11}$ but its thermal instability or use of unavailable olefins limited the synthetic application.
- J. D. Park, J. Abramo, M. Hein, D. N. Gray, and J. R. Lacher, <u>J. Org. Chem.</u>, 23, 1661 (1958).
- 11. (a) P. Tarrant, P. Johncick, and J. Savory, <u>J. Org. Chem.</u>, 28, 839 (1963). (b) D. Masure, R. Sauvetre, J. F. Normant, and J. Villieras, <u>Synthesis</u>, 1976, 761. (c) D. Masure, C. Chuit, R. Sauvetre, and J. F. Normant, <u>ibid.</u>, 1978, 458.
- 12. M. Fujita and T. Hiyama, an accompanying paper.
- (a) J. F. Normant, J. P. Foulon, D. Masure, R. Sauvetre, and J. Villieras, <u>Synthesis</u>, 1975, 122. (b) C. Chuit, R. Sauvetre, D. Masure, M. Baudry, J. F. Normant, and J. Villieras, <u>J. Chem. Res. (S)</u>, 1977, 104. (c) R. Sauvetre, D. Masure, C. Chet, and J. F. Normant, <u>Synthesis</u>, 1978, 128. (d) J. P. Gillet, R. Sauvetre, and J. F. Normant, <u>Tetrahedron Lett</u>., 26, 3999 (1985). (e) F. Tellier, R. Sauvetre, and J. F. Normant, <u>J.</u> <u>Organomet. Chem.</u>, 292, 19 (1985).

(Received in Japan 10 May 1986)